Фотосинтетические пигменты 1

Фотосинтетические пигменты 1

Фотосинтетические пигменты

Смотрите также:

Жизнь на Земле возможна благодаря световой (главным образом, солнечной) энергии, которая преобразуется в энергию химических связей органических веществ, образующихся в процессе фотосинтеза. Фотосинтезом обладают все растения и некоторые прокариоты (фотосинтезирующие бактерии и сине-зеленые водоросли — цианобактерии). Организмы, способные к фотосинтезу, называются фототрофами.

У высших растений побег развился как орган воздушного питания. Поэтому, наряду с размножением, его основной функцией является обеспечение всего растительного организма органическими веществами, образованными в процессе фотосинтеза (греч. phos, photos — свет, synthesis — соединение, сочетание, составление). Этот процесс представляет собой сложную цепь реакций, в результате которых из углерода и водорода, полученных из неорганических источников, образуются органические соединения. Для нормального течения этих реакций необходима энергия. Растения получают ее от падающего света, что и дало название всему процессу. Свет улавливается особыми молекулами, которые получили название фотосинтетических пигментов (лат. pigmentum — краска). О них следует рассказать подробнее.

Фотосинтетические пигменты

Они представлены молекулами, способными поглощать кванты (нем. Quantum — количество, лат. quantum — сколько) света. Поскольку при этом поглощается свет лишь определенной длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отраженного света пигменты приобретают окраску — зеленую, желтую, красную и др. В настоящее время различают три класса фотосинтетических пигментов — хлорофиллы1, каротиноидыь и фикобилины1.

Самым распространенным и наиболее важным фотосинтетическим пигментом является хлорофилл (греч. chloros — зеленоватый, phyllon — лист), который имеется практически у всех фототрофов. Основой является плоское порфириновое ядро, образованное СН2 четырьмя пиррольными кольцами, соединенными меж- НС-СН3 ду собой метиновыми мостиками, с атомом магния в СН2 центре ( 43).

В порфириновом ядре, кроме собственно пиррола, содержатся также его изомер — пир- роленин и продукт неполного восстановления пирро- I 2 ла — пирролин. Поскольку в этих циклических соеди- НС-СН3 нениях, помимо атомов углерода, присутствует гете- СН2 роатом (греч. heteros — другой) — азот, они называются СН2 гетероциклическими. Наличие двойных связей позволя- СН ет отнести их к ненасыщенным гетероциклам. Атомы СН^СН3 углерода, расположенные в гетероцикле рядом с гетеро- атомом — азотом, обозначаются как а-атомы, а удаленные от него — Д-атомы. Поскольку все связи а-углеродных атомов в молекуле хлорофилла заняты в формировании порфиринового кольца, они не определяют специфику различных видов хлорофилла, эту функцию выполняют Д-углеродные атомы. Сами атомы азота взаимодействуют с расположенным в центре ядра атомом металла — магнием (отметим, что у близкого по строению гема, входящего в состав гемоглобина, миоглобина или цитохрома, в центре ядра находится атом железа). Так как в порфириновом ядре имеются многочисленные двойные связи, там присутствуют делокализованные (более подвижные) ж-электроны, которых в ядре насчитывается 18. Позднее мы расскажем о значении таких электронов для фотосинтеза.

Фитол относится к дитерпенам, основу которых составляют остатки изопрена.

Такая структура молекулы определяет свойства хлорофилла — гидрофобный фитольный «хвост» надежно удерживает молекулу в гидрофобной части мембраны тилакоида хлоропласта, а гидрофильное порфириновое ядро обращено к строме хлоропласта. При этом само ядро ориентировано параллельно мембране, в которой находится хлорофилл.

Синтез хлорофилла довольно сложен и включает в себя 15 реакций, которые можно разделить на три этапа. Исходными веществами для синтеза хлорофилла являются глицин и ацетат. На первом этапе образуется 5-аминолевулиновая кислота. На втором этапе происходит синтез одной молекулы протопорфирина из четырех пир- рольных колец.

Третий этап представляет собой образование и превращение магнийпорфиринов.

Все низшие и высшие растения, а также цианобактерии содержат различные хлорофиллы1 типа а. У высших растений, зеленых и эвгленовых водорослей имеется хлорофилл b (он образуется из хлорофилла а), который отличается от хлорофилла а присутствием формильной группы -СНО, вместо метильной (-СН3) у третьего атома углерода. Бурые и диатомовые водоросли вместо хлорофилла b содержат хлорофилл с, не имеющий остатка фитола, а красные водоросли — хлорофилл d, который отличается от хлорофилла а тем, что при углеродном атоме 2 порфиринового кольца вместо винильной группы имеется формильный радикал. Хлорофиллы бактерий имеют некоторые специфические особенности и называются бактериохлорофиллами.

Молекулы хлорофиллов способны, взаимодействуя друг с другом и молекулами белков, создавать агрегированные формы, различающиеся по длине волн поглощенного света.

Хлорофилл а имеет два четко выраженных максимума поглощения — 660 — 663 нм и 428 — 430 нм. Хлорофилл b поглощает более короткие волны в красной части спектра и более длинные в синей. Его максимумы поглощения будут 642 — 644 нм и 452 — 455 нм соответственно. Все хлорофиллы слабо поглощают желтый и оранжевый свет, а зеленый они отражают, что и определяет зеленую окраску этого класса пигментов ( 44).

Смотрите также:

. центры фотосинтетической активности, в которых сосредоточены весь хлорофилл и все вспомогательные пигменты, связанные с фотосинтезом.
Митохондрии также содержат специфическую ДНК и аппарат белкового синтеза, а следовательно, и они, возможно.

Хлорофилл — главное действующее начало в осуществлении фотосинтеза.
Прежде всего вое фотосинтетические пигменты сосредоточены в специальных внутриклеточных образованиях — хлоропластах ( 9). Хлоропласты — это микроскопические

Фотосинтез. Несколько лет французские химики Пельтье (1788-1842) и Каванту (1795— 1877) работали вместе.
Вильштеттер (1872—1942), сын торговца текстилем, немецкий биохимик, свои научные интересы связал с растительными пигментами (хлорофилл — один из них).

В 1915 году за исследования хлорофилла и других пигментов ему присудили Нобелевскую премию по химии.
И наконец, синтез хлорофилла, на который было затрачено 4 года.
У бактерий, способных осуществлять фотосинтез, хлорофилл заключен в хроматофорах.

В отсутствие хлорофилла каротиноиды неспособны осуществлять фотосинтез, поэтому принято
В гранах хлоропластов у высших растений фотосинтетические пигменты именно так и
Синтез АТР, протекающий с использованием энергии видимой части солнечной радиации.

жирорастворимые пигменты — хлорофиллы и каротиноиды
Если допустить, что внешние причины не лимитируют фотосинтез, то КПД может уменьшиться в результате наследственно закрепленной недостаточной эффективности фотосинтетического аппарата листа или же.

Фотосинтетические пигменты — ФОТОСИНТЕЗ — СТРОЕНИЕ РАСТИТЕЛЬНОЙ КЛЕТКИ — КЛЕТКА

Они представлены молекулами, способными поглощать кванты (нем. Quantum — количество, лат. quantum — сколько) света. Поскольку при этом поглощается свет лишь определенной длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отраженного света пигменты приобретают окраску — зеленую, желтую, красную и др. В настоящее время различают три класса фотосинтетических пигментов — хлорофиллы, каротиноиды и фикобилины.

Самым распространенным и наиболее важным фотосинтетическим пигментом является хлорофилл (греч. chloros — зеленоватый, phyllon — лист), который имеется практически у всех фототрофов (напоминаем, что фототрофами называются автотрофные организмы, способные к фотосинтезу). Хлорофилл неоднороден, насчитывается свыше десятка зеленых пигментов, отличающихся друг от друга атомными группами, присоединенными к пиррольным структурам порфиринового кольца, а также по некоторым другим характеристикам. Поэтому целесообразно начать с химической характеристики хлорофилла и других фотосинтетических пигментов.

Читайте также:  Диета при заболевании почек, меню питания

Химически хлорофилл представляет собой сложный эфир дикарбоновой кислоты хлорофиллина с двумя спиртами — фитолом и метанолом. Пространственная структура молекулы определяет свойства хлорофилла. Основой является плоское порфириновое ядро, образованное четырьмя пиррольными кольцами, соединенными между собой метиновыми мостиками, с атомом магния в центре (рис. 43). В порфириновом ядре, кроме собственно пиррола, содержатся также его изомер — пир- роленин и продукт неполного восстановления пиррола — пирролин. Поскольку в этих циклических соединениях, помимо атомов углерода, присутствует гетероатом (греч. heteros — другой) — азот, они называются гетероциклическими. Наличие двойных связей позволяет отнести их к ненасыщенным гетероциклам. Атомы углерода, расположенные в гетероцикле рядом с гетероатомом — азотом, обозначаются как а-атомы, а удаленные от него — Д-атомы. Поскольку все связи а-углеродных атомов в молекуле хлорофилла заняты в формировании порфиринового кольца, они не определяют специфику различных видов хлорофилла, эту функцию выполняют Д-углеродные атомы. Сами атомы азота взаимодействуют с расположенным в центре ядра атомом металла — магнием (отметим, что у близкого по строению гема, входящего в состав гемоглобина, миоглобина или цитохрома, в центре ядра находится атом железа). Так как в порфириновом ядре имеются многочисленные двойные связи, там присутствуют делокализованные (более подвижные) p-электроны, которых в ядре насчитывается 18. Позднее мы расскажем о значении таких электронов для фотосинтеза.

Фитол относится к дитерпенам, основу которых составляют остатки изопрена.

Такая структура молекулы определяет свойства хлорофилла — гидрофобный фитольный «хвост» надежно удерживает молекулу в гидрофобной части мембраны тилакоида хлоропласта, а гидрофильное порфириновое ядро обращено к строме хлоропласта. При этом само ядро ориентировано параллельно мембране, в которой находится хлорофилл.

Синтез хлорофилла довольно сложен и включает в себя 15 реакций, которые можно разделить на три этапа. Исходными веществами для синтеза хлорофилла являются глицин и ацетат. На первом этапе образуется -аминолевулиновая кислота. На втором этапе происходит синтез одной молекулы протопорфирина из четырех пиррольных колец. Третий этап представляет собой образование и превращение магнийпорфиринов.

Все низшие и высшие растения, а также цианобактерии содержат различные хлорофиллы типа а. У высших растений, зеленых и эвгленовых водорослей имеется хлорофилл b(он образуется из хлорофилла а), который отличается от хлорофилла а присутствием формильной группы -СНО, вместо метильной (-СН3) у третьего атома углерода. Бурые и диатомовые водоросли вместо хлорофилла b содержат хлорофилл с, не имеющий остатка фитола, а красные водоросли — хлорофилл d, который отличается от хлорофилла а тем, что при углеродном атоме 2 порфиринового кольца вместо винильной группы имеется формильный радикал. Хлорофиллы бактерий имеют некоторые специфические особенности и называются бактериохлорофиллами.

Молекулы хлорофиллов способны, взаимодействуя друг с другом и молекулами белков, создавать агрегированные формы, различающиеся по длине волн поглощенного света.Хлорофилл а имеет два четко выраженных максимума поглощения — 660 — 663 нм и 428 — 430 нм. Хлорофилл b поглощает более короткие волны в красной части спектра и более длинные в синей. Его максимумы поглощения будут 642 — 644 нм и 452 — 455 нм соответственно. Все хлорофиллы слабо поглощают желтый и оранжевый свет, а зеленый они отражают, что и определяет зеленую окраску этого класса пигментов (рис. 44).

Бактериохлорофиллы отличаются от прочих типов хлорофиллов тем, что способны поглощать красный свет гораздо большей длины, чем хлорофиллы растений. Так, бактериохлорофилл зеленых бактерий утилизирует волны длиной 850 нм, бактериохлорофилл а пурпурных бактерий до 900 нм, а бактериохлорофилл b пурпурных бактерий — до 1100 нм. Это обстоятельство позволяет бактериям, особенно пурпурным, активно расти при наличии лишь не видимых человеческим глазом инфракрасных лучей.

Другую обязательную группу фотосинтетических пигментов образуют каротиноиды (лат. carota — морковь). Эти жирорастворимые пигменты имеют различную окраску — от желтой до красной. Они содержатся во всех окрашенных пластидах (хлоропластах и хромопластах) растений. Причем в зеленых частях растений хлорофилл маскирует каротиноиды, делая их незаметными до наступления холодов. Осенью зеленые пигменты разрушаются, и каротиноиды становятся хорошо заметными, определяя окраску осенних листьев. Кроме растений, каротиноиды синтезируют фототрофные бактерии и грибы.

Каротиноиды в растительном организме выполняют ряд функций, среди которых наиболее очевидными являются следующие: участие в фотосинтезе в качестве дополнительных пигментов антенных комплексов. Они способны поглощать свет, не доступный для других пигментов, и передавать его хлорофиллам. Кроме того, каротиноиды ослабляют фотоокисление хлорофилла в присутствии кислорода.

Третьей группой фотосинтетических пигментов являются фикобилины (греч. phykos — водоросль, лат. bilis — желчь), которые присутствуют у некоторых водорослей (красных) и цианобактерий. Отдельными молекулами фикобилины, как правило, не представлены, а образуют комплексы с белками, с которыми они, в отличие от хлорофиллов, связаны прочными ковалентными связями. Комплексы таких пигментов с белками называются фикоби- липротеидами (хромопротеидами).

Согласно первому закону термодинамики энергия не может исчезать или возникать ниоткуда — она может лишь переходить из одного состояния в другое. Согласно второму закону термодинамики часть энергии в процессе такого перехода теряется в виде тепла из-за энтропии, причем величина энтропии возрастает при необратимых процессах (например, теплопроводность, диффузия) и остается постоянной при обратимых. Поэтому при межмолекулярной передаче молекула всегда отдает большее количество энергии, чем ее в итоге получает молекула-акцептор.

Величина энергии электрона определяет расстояние от него до ядра — чем меньше энергия электрона, тем ближе он к ядру, и наоборот. Любому энергетическому состоянию электрона соответствует определенный энергетический уровень (квантовый слой), характеризуемый главным квантовым числом п, которое имеет значения от единицы до бесконечности. Соответственно электрон, будучи на первом уровне, обладает минимальной энергией и максимально близок к ядру, а находясь на наиболее удаленном уровне, обладает максимальной энергией. При переходе на более далекий уровень электрон поглощает энергию, а при возврате на более близкий — выделяет в виде порций (квантов).

Согласно сказанному выше электроны молекул пигментов, поглотив энергию, переходят на более высокий энергетический уровень, т.е. становятся возбужденными. Однако рано или поздно они возвращаются на свой исходный (стационарный) уровень, выделив энергию, полученную ранее при возбуждении.

Молекула хлорофилла, поглотив порцию (квант) света, переходит в несколько иное по сравнению с обычным состояние, которое называют возбужденным. Это состояние отличается от тепловой активации молекул, поскольку каждый квант возбуждает лишь одну молекулу хлорофилла, передавая ей свою энергию. При этом квант поглощается не всей молекулой хлорофилла, а лишь одним из ее электронов, причем наиболее легко активируются электроны, находящиеся в порфириновом кольце хлорофилла. Поглотивший квант света электрон временно переходит со своего основного энергетического уровня на более высокий. При этом на основном уровне место перешедшего электрона остается вакантным (появляется электронная «дырка») и вся молекула становится возбужденной. Возврат электрона на исходный уровень сопровождается выделением энергии в виде тепла, или же она высвечивается в виде кванта света с длиной волны всегда большей (правило Стокса), чем у поглощенного кванта света.

Читайте также:  Почему болит грудная клетка – возможные причины

Количество фиксированных молекул углекислого газа в расчете на единицу поглощенной энергии определяет энергетическую эффективность фотосинтеза. Как мы уже говорили, у основного фотосинтетического пигмента хлорофилла имеются два пика поглощения света — в синей и красной, а также частично в инфракрасной частях спектра. Солнце излучает максимальное количество квантов длинноволновой части спектра, и следует отметить, что энергетическая эффективность таких лучей почти вдвое выше, чем синих, потому что при поглощении высоко энергетически насыщенных коротких волн происходит тепловое рассеивание значительной части энергии.

Итак, в основе всех энергетических процессов, которым происходят в живых организмах, лежит энергия возбужденного электрона хлорофилла, которую он получает, поглощая квант света. Теперь настало время проследить путь этого электрона, причем, как мы увидим позже, он в прямом смысле этого слова может быть весьма извилистым.

В мембранах тилакоидов хлоропластов были обнаружены комплексы молекул, названные фотосистемой I и фотосистемой II. Они совместно обеспечивают трансформацию световой энергии в удобную для использования живыми организмами энергию химических связей.

Каждая из фотосистем имеет реакционный центр (рис. 45), который образован пронизывающими насквозь мембрану тилакоида белками, ассоциированными с хлорофиллом (напомним, что комплекс молекулы белка с пигментом называется хромопротеидом). Пигменты реакционного центра способны поглощать энергию света, которая переводит электроны в неустойчивое возбужденное состояние, в результате чего они покидают молекулу хлорофилла и переходят на расположенные поблизости молекулы-переносчики. Это говорит о том, что находящийся в реакционном центре хлорофилл способен осуществлять фотохимические реакции.

Вторым обязательным компонентом фотосистемы является антенным комплекс. В нем также имеется хлорофилл, причем на его долю приходится до 60% общего количества хлорофилла тилакоидных мембран. Специальные исследования показали, что на один реакционный центр приходится 200 — 400 молекул хлорофилла, расположенных в антенных комплексах. Кроме хлорофилла а, здесь присутствуют еще и дополнительные пигменты — хлорофилл в, каротиноиды и фикобилины. Их роль заключается в улавливании света с длиной волн, не доступной для хлорофилла а. Следует отметить, что молекулы пигментов антенных комплексов, пребывая в возбужденном состоянии (в результате поглощения энергии фотона), не осуществляют фотохимических реакций, зато они эффективно передают полученную энергию по цепи хлорофиллу реакционного центра. Направление переноса энергии (электроны здесь не передаются) в антенных комплексах всегда ориентировано от пигментов, поглощающих самую короткую часть спектра (каротиноидов), к более «длинноволновым» пигментам. Как мы уже говорили, такой процесс получил название резонансной передачи энергии. При этом резонансная передача энергии, осуществляемая между одинаковыми молекулами хлорофилла, получила название гомогенной, если же энергия переносится на другой тип пигмента, то перенос называется гетерогенным.

Рассмотрим устройство фотосистемы I. Считается, что исторически она возникла раньше фотосистемы II и в настоящее время имеется практически у всех фотосинтезирующих организмов, включая способных к фотосинтезу бактерий (у последних отсутствует фотосистема II и, следовательно, не происходит разложения воды и выделения кислорода). В состав реакционного центра этой фотосистемы входят хромопротеиды, содержащие самую длинноволновую форму хлорофилла (его сокращенно обозначают как П700, показывая тем самым длину волны, которую способен поглощать конкретный пигмент). Антенный комплекс этой фотосистемы включает в себя 110 молекул хлорофиллов группы а, имеющих максимумы поглощения от 675 до 695 нм.

Согласно теории эволюции фотосистема II в процессе исторического развития появилась позже. На современном этапе она присутствует у всех зеленых растений, а также у сине-зеленых водорослей. Белковые комплексы фотосистемы II включают в себя несколько более коротковолновые формы хлорофилла. Реакционный центр содержит более коротковолновую форму хлорофилла а — П680. В антенном комплексе имеются хлорофиллы а670-683.

Кроме того, в мембранах тилакоидов находятся непосредственно связанные с фотосистемой II светособирающие белковые комплексы, в которых присутствуют хлорофиллыа660-675, а также хлорофилл в650 (несколько в большем количестве, чем хлорофилл а) и каротиноиды.

Весьма сложные и разнообразные реакции фотосинтеза, в основе которых лежат фотохимические процессы, в конечном итоге преобразуют энергию света в химическую. Однако наличие света необходимо отнюдь не для всех этапов, а лишь вначале, поэтому в фотосинтезе выделяют световую и темновую стадии.

Фотосинтетические пигменты находятся

9.3.2. Фотосинтетические пигменты

Фотосинтетические пигменты высших растений делятся на две группы — хлорофиллы и каротиноиды. Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света. В табл. 9.4 перечислены пигменты, характерные для различных групп растений.


Таблица 9.4. Главные фотосинтетические пигменты, их цвет и распространение

Хлорофиллы

Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. На рис. 9.9 показаны спектры поглощения хлорофиллов a и b — для сравнения — спектр каротиноидов.


Рис. 9.9. Спектры поглощения хлорофиллов a и b и каротиноидов

Для хлорофиллов характерно наличие порфиринового кольца (рис. 9.10). Такая же структура имеется и в других важных биологических соединениях — в геме гемоглобина, миоглобина и цитохромов. Порфириновое кольцо — это плоская квадратная структура, состоящая из четырех меньших колец (I-IV), каждое из которых содержит по одному атому азота, способному взаимодействовать с атомами металлов; в хлорофиллах это магний, в геме-железо. К такой «голове» присоединен длинный углеводородный «хвост» — сложноэфирная связь образуется между спиртовой группой (-ОН) на конце фитола и карбоксильной группой (-СООН) на самой голове. У разных хлорофиллов разные боковые цепи, и это несколько изменяет их спектры поглощения.


Рис. 9.10. Строение хлорофилла. Координационная связь: Х-СН3 — у хлорофилла а; -СНО — у хлорофилла b

Связь такой структуры с функцией можно описать следующим образом:

а) длинный хвост растворим в липидах (т. е. он гидрофобный) и таким образом удерживает молекулу в мембране тилакоида;

б) голова гидрофильная (т. е. обладает сродством к воде), и поэтому она обычно лежит на той поверхности мембраны, которая обращена к водной среде стромы;

в) для лучшего поглощения света плоскость головы расположена параллельно плоскости мембраны;

г) модификация боковых групп на голове приводит к изменениям в спектре поглощения, в результате чего меняется и количество поглощаемой энергии света;

д) поглощение световой энергии головой приводит к эмиссии электронов.

Хлорофилл а — фотосинтетический пигмент, представленный в наибольшем количестве; это единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.

Читайте также:  Пульмонолог о том, какой кашель самый опасный, как не просмотреть пневмонию и зачем от нее прививать

9.6. Чем отличается спектр поглощения хлорофилла а от спектра поглощения хлорофилла b?

Каротиноиды

Каротиноиды — это желтые, оранжевые, красные или коричневые пигменты, которые сильно поглощают в сине-фиолетовой области. Обычно они замаскированы зелеными хлорофиллами, но хорошо выявляются перед листопадом, так как хлорофиллы в листьях распадаются первыми. Каротиноиды содержатся также в хромопластах некоторых цветков и плодов, яркая окраска которых служит для привлечения насекомых, птиц и других животных, участвующих в опылении цветков или распространении семян; например, красный цвет кожицы помидоров обусловлен присутствием одного из каротинов — ликопина.

Каротиноиды имеют три максимума поглощения в сине-фиолетовой области спектра (рис. 9.9); они не только функционируют как дополнительные пигменты, но и защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

Каротиноиды бывают двух типов — каротины и ксантофиллы. Каротины — это углеводороды, большую часть которых составляют тетратерпены (С40-соединения). Самым распространенным и самым важным из них является β-каротин (рис. 9.11), который знаком всем как оранжевый пигмент моркови. Позвоночные животные способны в процессе пищеварения расщеплять молекулу каротина надвое с образованием двух молекул витамина А. Ксантофиллы по химическому строению очень сходны с каротинами и отличаются от них только тем, что содержат кислород.


Рис. 9.11. Строение β-каротина

Спектры поглощения и спектры действия

При изучении какого-либо процесса, активируемого светом, в частности фотосинтеза, очень важно знать спектр действия для данного процесса — тогда можно попытаться идентифицировать пигменты, которые в нем участвуют. Спектр действия — это график, показывающий эффективность стимулирующего действия света с различной длиной волны на исследуемый процесс, в нашем случае — на фотосинтез; эту эффективность можно оценивать, например, по образованию кислорода. Спектр поглощения — это график, отображающий относительное поглощение света с различной длиной волны тем или иным пигментом. Спектр действия для фотосинтеза показан на рис. 9.12, вместе с объединенным спектром поглощения всех фотосинтетических пигментов. Обратите внимание на большое сходство этих двух графиков: оно свидетельствует о том, что именно пигменты, и в частности хлорофилл, ответственны за поглощение света при фотосинтезе.


Рис. 9.12. Сравнение спектра действия фотосинтеза со спектром поглощения фотосинтетических пигментов

Возбуждение пигментов светом

Пигменты — это химические соединения, которые поглощают видимый свет, что приводит к переходу некоторых электронов в возбужденное состояние, т. е. эти электроны поглощают энергию. Чем меньше длина волны, тем выше энергия света и тем больше его способность переводить электроны в возбужденное состояние. Такое состояние обычно неустойчиво, и вскоре молекула возвращается в свое основное состояние (т. е. исходное низкоэнергетическое состояние), теряя при этом энергию возбуждения. Эта энергия может использоваться разными способами, в том числе на процесс, обратный поглощению света и называемый флуоресценцией. При этом часть энергии теряется в виде тепла, поэтому излучаемый свет имеет несколько большую длину волны (и меньшую энергию), чем поглощенный. Это можно увидеть, если сначала осветить раствор хлорофилла, а затем посмотреть на него в темноте.

Во время световых реакций фотосинтеза возбужденные пигменты теряют электроны, и на их месте в молекулах остаются положительные «дырки», например:

Всякий потерянный электрон будет принят другой молекулой — так называемым акцептором электрона, так что в целом это окислительно-восстановительный процесс (см. Приложение 1.2). Хлорофилл окисляется, а акцептор электрона восстанавливается. Хлорофилл служит здесь донором электрона.

Главные и вспомогательные пигменты

Фотосинтетические пигменты бывают двух типов — главные и вспомогательные. Пигменты второго типа передают испускаемые ими электроны главному пигменту. Электроны, испускаемые главными пигментами, непосредственно доставляют энергию для реакций фотосинтеза.

Существует два главных пигмента, это две формы хлорофилла а; их обозначают Р690 и Р700 (см. ниже). Сокращение Р означает «пигмент» (pigment). К вспомогательным пигментам относятся другие формы хлорофилла (в том числе все остальные формы хлорофилла а) и каротиноиды.

9.7. Поскольку энергию нельзя передавать со 100%-ной эффективностью, переход электрона от одной молекулы пигмента к другой должен сопровождаться некоторой потерей энергии в виде тепла. Хлорофилл b передает электроны на хлорофилл а. Можете ли вы сказать заранее, какой из этих хлорофиллов — а или b — обладает меньшей энергией возбуждения (т. е. энергией, необходимой для того, чтобы пигмент испустил электрон)?

Фотосинтетические единицы и реакционные центры

За последние двадцать лет мы многое узнали о расположении пигментов и связанных с ними молекул в мембранах тилакоидов. В настоящее время принято считать, что существует два типа фотосинтетических единиц, которые называют фотосистемами I и II (ФСI и ФСII). Каждая из этих единиц состоит из набора молекул вспомогательных пигментов, передающих энергию на одну молекулу главного пигмента. Последняя называется реакционным центром; в нем энергия света используется для осуществления химической реакции. Именно здесь происходит преобразование световой энергии в химическую, и именно оно является центральным событием фотосинтеза.

Судя по результатам биохимических и электронно-микроскопических исследований, каждая фотосистема содержит около 300 молекул хлорофилла. Препараты для электронной микроскопии приготовлялись методом замораживания-скалывания, который описан в Приложении 2.5; это один из хороших примеров успешного применения такого метода. Как видно на рис. 9.13, в мембранах тилакоидов имеются частицы двух типов, расположенные в определенном порядке; такие частицы называются квантосомами. Как полагают, более мелкие частицы составляют фотосистему I, а более крупные — фотосистему ΙΙ. Для каждого типа частиц характерен свой специфический набор молекул хлорофилла (рис. 9.14). Частицы фотосистемы II, по-видимому, в основном связаны с гранами. На рис. 9.14 схематически показано, как энергия (в виде возбужденных электронов) «переливается» со вспомогательных светособирающих пигментов на главный пигмент, который представлен особой формой хлорофилла а — пигментом Р690 или Р700 (в соответствии с максимумом поглощения в нанометрах). Р690 и Р700 — это энергетические ловушки. Другие специфические формы хлорофилла а, например a670 или a680, можно считать такими же вспомогательными пигментами, как и хлорофилл b. На рис. 9.14 не показаны каротиноиды, но они, по-видимому, тоже играют роль вспомогательных пигментов. Электроны, попавшие в энергетическую ловушку, используются для запуска световых реакций.


Рис. 9.13. Тилакоиды хлоропласта, выявленные методом замораживания-скалывания. Видна поверхность скола мембран самих гран и между ними. Обратите внимание на агрегаты частиц на этих мембранах


Рис. 9.14. Схематическое представление об энергетических ловушках в фотосистемах I и II. Р — пигмент, те молекула первичного пигмента хлорофилла а

Чтобы все ваши желания стали действительностью, вам необходимо вкусить блаженство с хорошими проститутками и заняться с ними любовью. Всегда индивидуалки помогут исполниться вашим самым порядочным голым фантазиям.

Ссылка на основную публикацию
Форадил Комби (Foradil Combi) — инструкция по применению, состав, аналоги препарата, дозировки, побо
Форадил Комби Состав Лекарственное средство Форадил Комби выпускается в виде набора капсул формотерола и будесонида. В состав 1 капсулы формотерола...
Филогенез иммунной системы 2
Филогенез иммунной системы. Онтогенез иммунной системы Одноклеточные: Многоклеточные: Кораллы – отторжение трансплантата, распознавание «чужого» Губки – специфическая агрегация, распознавание «своего»...
Фимоз у мальчиков Журнал Домашний очаг
Что делать, если крайняя плоть у мужчин и мальчиков слишком длинная Мужчин всегда заботило строение, форма и размеры половых органов....
Форма 026у для детского сада и школы в медцентре «Деломедика» в городах Королев, Мытищи, Пушкино, Се
Оформление медицинской карты в детский сад Вашему ребенку пора идти в детский сад? Для поступления в детский сад обязательно предоставление...
Adblock detector