Эндоплазматический ретикулум Дистанционные уроки

Эндоплазматический ретикулум Дистанционные уроки

Экология СПРАВОЧНИК

Информация

Эндоплазматический ретикулум

Эндоплазматический ретикулум представляет собой систему каналов, которые пронизывают цитоплазму и которые в одних участках сужаются, в других расширяются, образуя то цистерны, то плоские мешки, то ветвящиеся трубки. Стенки всех этих образований построены из мембран, включающих в свой состав ферменты.[ . ]

Эндоплазматический ретикулум, кроме того, что он является конвейером для многих видов ферментативного превращения веществ, главным образом для их синтеза, представляет собой и систему магистралей, по которым вещества перемещаются по клетке. Начинается ретикулум от наружной мембраны оболочки ядра и, ветвясь, подходит к различным органоидам цитоплазмы, а также к плазмалемме. Тем самым он связывает между собой все части клетки. Кроме того, каналы эндоплазматического ретикулума проходят через плазмодесмы, соединяя ретикулум соседних клеток.[ . ]

Агранулярный эндоплазматический ретикулум, который в растительной клетке количественно преобладает над гранулярным, не несет рибосом.[ . ]

Далее, мембраны эндоплазматического ретикулума расчленяют цитоплазму на многочисленные отсеки, благодаря чему клетку нельзя представить как однородный массив, в котором перемешаны самые различные вещества. Условия в одном отсеке могут быть совершенно иными, чем в любом другом; процессы, в нем протекающие, могут идти только в нем, тогда как в каждом другом происходят иные процессы.[ . ]

Наконец, мембраны эндоплазматического ретикулума — это те поверхности, по которым распространяются биотоки, являющиеся сигналами, меняющими избирательную проницаемость мембран и тем самым активность ферментов. Благодаря этому одни химические реакции пускаются в ход, другие тормозятся — обмен веществ подчиняется регуляции и протекает координированно.[ . ]

Мембрана гранулярной эндоплазматической сети со стороны цитоплазмы густо покрыта гранулами — рибосомами. Этот тип эндоплазматического ретикулума может быть представлен в виде разрозненных мембран либо в виде их скоплений — эргасто-плазмы. Последние особенно часто встречаются в клетках, активно синтезирующих секреторные белки. Однако роль гранулярной эндоплазматической сети не ограничивается лишь участием в синтезе белков на рибосомах ее мембран, с ней связан и процесс обособления и удаления синтезированных белков, т. е. изоляция их от основных функционирующих белков клетки. Эта последняя функция эндоплазматической сети гранулярного типа объясняет ее связь со многими процессами, приводящими к выделению подобных белков с помощью /вакуолей аппарата Г ольджи.[ . ]

В везикулах шероховатого эндоплазматического ретикулума из клеток корней на красном свету синтез АХ увеличивался по сравнению с темнотой в 2-20 раз, тогда как на дальнем красном свету или не наблюдалось изменений, или скорость синтеза даже снижалась (в 5 раз). Полагают, что синтез АХ управляется фитохромом, который существует в двух формах, чувствительных либо к дальнему красному, либо к красному свету.[ . ]

На наружной поверхности каналов гранулярного ретикулума располагаются многочисленные мелкие органоиды — рибосомы, функцией которых является синтез белковых молекул.[ . ]

Сведения по цитологии грибов связаны в основном с исследованием строения клетки дрожжевых и дрожжеподобных грибов. В дрожжевой клетке обнаружен эндоплазматический ретикулум (ЭР), представляющий собой систему пузырьков или цистерн и канальцев, соединяющихся с нуклеолеммой и цитоплазматической мембраной. Мембраны эндоплазматического ретикулума обеспечивают продвижение различных веществ по грибной клетке, представляют собой активные поверхности для локализации ферментов, а следовательно, и метаболических процессов. Есть предположение об участии ЭР в синтезе липидов и углеводов.[ . ]

В процессе аккумуляции иопов в разных органеллах цитоплазмы и включения в метаболизм большое значение имеет их внутриклеточный транспорт. Этот процесс осуществляется, по-видимому, по каналам эндоплазматического ретикулума.[ . ]

Глубокое влияние оказывают на гаметогенез различные виды излучений. Семенники гуппи довольно быстро реагируют на облучение.[ . ]

Содержание свободного кальция в цитозоле растительной клетки столь же низко, как и у животных клеток. У водорослей, в зависимости от концентрации иона во внешней среде, его уровень колеблется от 2 до 0,2 мкМ. В качестве депо кальция растительные клетки наряду с эндоплазматическим ретикулумом и митохондриями используют вакуоль и хлоропласта. В вакуоле и клеточной стенке концентрация свободного иона может на несколько порядков превышать его содержание в цитозоле.[ . ]

Первым звеном в цепи геотропической реакции является перемещение статолитов — они начинают давить в ином направлении. Такое перемещение должно «восприниматься» клеткой, однако еще не ясно, каким образом это происходит. В клетках корневого чехлика, особенно в их нижней части, где обычно располагаются статолиты, особенно сильно развит эндоплазматический ретикулум. Возможно, что именно он каким-то образом воспринимает перемену в положении статолитов или в ориентации их давления, но это пока еще не подтверждено однозначными экспериментальными данными.[ . ]

Однако, чтобы Са2+ эффективно управлял клеточными процессами, его концентрация в свою очередь тоже должна регулироваться. В процессе эволюции в клетке возникла сложная система, поддерживающая концентрацию Са2+ в нормальных условиях на уровне 0.1 мкМ. Низкая концентрация иона — необходимое условие для метаболизма, основанного на энергии фосфатной связи. Если бы концентрация была высокой, то фосфат, образующийся при расщеплении АТФ, выпадал в виде кристаллического нерастворимого осадка. Кроме того, благодаря низкой концентрации Са2+ невелики затраты энергии при его использовании в качестве внутриклеточного мессенджера.[ . ]

С другой стороны, имеются сведения о чрезвычайно раннем развитии и, видимо, постоянном наличии интерстициальных компонентов типа клеток Лейдига в семенниках у форели (Oota, Yamamoto, 1966). Они обладают хорошо развитым эндоплазматическим ретикулумом, внутренние мембраны митохондриев имеют характерную трубчатую или пузырчатую структуру.[ . ]

Читайте также:  Как определить беременность без теста в домашних условиях

Первый хорошо заметный признак старения — пожелтение листа — обусловлен разрушением хлорофилла, в связи с чем другие пигменты листа, в особенности ксантофиллы и кароти-ноиды, становятся видимыми. Изучение ультраструктуры стареющих листьев показало, что происходит постепенная деградация мембранной структуры гран хлоропластов, сопровождающаяся появлением плотных шариков липидного материала (возможно, образующихся из разрушенных мембран), в которых растворены каротнноиды. Другие ранние изменения включают дегенерацию эндоплазматического ретикулума и постепенное исчезновение рибосом. Митохондрии сохраняют свою-структуру на ранних стадиях старения, но позднее они также подвергаются дегенерации. В клетках полностью состарившихся листьев фасоли плазмалемма все еще остается интактпон, но тонопласт исчезает и структура цитоплазмы и ядра совершенно утрачивается. Оставшиеся хлоропласта представлены пузырьками, содержащими капельки жира.[ . ]

Лекция № 7. Эукариотическая клетка: строение и функции органоидов

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Аппарат Гольджи

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Читайте также:  Что такое экзема, почему она появляется и как её лечить - Лайфхакер

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Митохондрии

Строение митохондрии:
1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Читайте также:  Изменения по Модик- что это такое, Модик 1, Модик 2 и Модик 3

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

Строение рибосомы:
1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

Перейти к лекции №8 «Ядро. Хромосомы»

Смотреть оглавление (лекции №1-25)

Рисунок 1.3.8. Эндоплазматическая сеть

Листать назад Оглавление Листать вперед

Рисунок 1.3.8. Эндоплазматическая сеть:

1 – рибосома; 2 – плоский мешок или трубчатое образование; 3 – мембрана; 4 – внутренняя полость; 5 – отщепляющийся мембранный пузырек (вакуоль)

Официальный сайт компании РЛС ® . Главная энциклопедия лекарств и товаров аптечного ассортимента российского интернета. Справочник лекарственных препаратов Rlsnet.ru предоставляет пользователям доступ к инструкциям, ценам и описаниям лекарственных средств, БАДов, медицинских изделий, медицинских приборов и других товаров. Фармакологический справочник включает информацию о составе и форме выпуска, фармакологическом действии, показаниях к применению, противопоказаниях, побочных действиях, взаимодействии лекарств, способе применения лекарственных препаратов, фармацевтических компаниях. Лекарственный справочник содержит цены на лекарства и товары фармацевтического рынка в Москве и других городах России.

Запрещена передача, копирование, распространение информации без разрешения ООО «РЛС-Патент».

При цитировании информационных материалов, опубликованных на страницах сайта www.rlsnet.ru, ссылка на источник информации обязательна.

Еще много интересного

© РЕГИСТР ЛЕКАРСТВЕННЫХ СРЕДСТВ РОССИИ ® РЛС ® , 2000-2020.

Все права защищены.

Не разрешается коммерческое использование материалов.

Информация предназначена для медицинских специалистов.

Ссылка на основную публикацию
ЭНДОКАРД — что такое в Словаре медицинских терминов
Эндокард 1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия....
Электроэнцефалография (ЭЭГ) как проводится, показания, подготовка Food and Health
ЭЭГ - Электроэнцефалография Многопрофильный медицинский холдинг «СМ-Клиника» приглашает на проведение электроэнцефалографии пациентов любых возрастов. В сети медицинских клиник имеется современное...
Электроэпиляция у метро Академическая, Москва — 3 места �� (адреса, отзывы, фото, рейтинг) HipDir
Электроэпиляция Электроэпиляция – один из проверенных и зарекомендовавших себя способов устранения лишних волосков на теле. Специфика проведения процедуры позволяет разрушить...
Эндокринная система, классификация желез организма человека, строение и функции желез внутренней сек
ЭНДОКРИННАЯ СИСТЕМА КЛАССИФИКАЦИЯ ЖЕЛЕЗ ОРГАНИЗМА ЧЕЛОВЕКА В организме человека различают 3 вида желез: железы внешней секреции (экзокринные), внутренней секреции (эндокринные),...
Adblock detector