Регуляция синтеза холестерола

Регуляция синтеза холестерола

Эндогенный синтез холестерина

Регуляция синтеза холестерола происходит на раннем этапе пути. У голодающих крыс наблюдается выраженное снижение активности ГМГ-СоА-редуктазы, что объясняет уменьшение синтеза холестерола в период голодания. ГМГ-СоА-редуктаза ингибируется в печени холестеролом по принципу обратной связи. Поскольку прямого ингибирования фермента не наблюдается, по-видимому, холестерол (или его метаболит, например окисленный стерол) действует опосредованно: либо подавляя синтез редуктазы de novo, либо индуцируя синтез ферментов, катализирующих инактивацию редуктазы. Синтез холестерола ингибируется также холестеролсодержащими ЛПНП при их связывании с соответствующими рецепторами (рецепторы ). Интенсивность синтеза холестерола и активность ГМГ-СоА-редуктазы меняются в зависимости от времени суток. Результаты ряда исследований свидетельствуют о весьма быстром действии холестерола на редуктазную активность, которое нельзя объяснить только влиянием на скорость синтеза фермента. При введении инсулина или тиреоидного гормона активность ГМГ-СоА-редуктазы увеличивается, а при введении глюкагона или глюкокортикоидов уменьшается. ГМГ-СоА-редуктаза может находиться либо в активном, либо в неактивном состоянии. Переход из одного состояния в другое происходит в результате реакций фосфорилирования и дефосфорилирования, некоторые из них, по-видимому, являются сАМР-зависимыми и поэтому регулируются глюкагоном (рис. 27.4). Влияние количества холестерола, поступающего с пищей, на образование эндогенного холестерола было изучено на крысах. Если пища содержала только 0,05% холестерола, то 70—80% холестерола, обнаруживаемого в печени, тонком кишечнике и надпочечниках, синтезировалось эндогенно, а если пища содержала 2% холестерола, эндогенный синтез холестерола уменьшался. Однако при увеличении

Рис. 27.4. Возможные механизмы регуляции сишеза холестерола ГМГ-СоА-редуктазой.

Рис. 27.5. Факторы, влияющие, на баланс холестерола на клеточном уровне. X — холестерол; ЗХ — эфиры холестерола; АХЛТ — аци-СоА.холестерол ацилтрансфераза, ЛХАТ лецптин:холестерол ацилтрансфераза; А-I апобелок A-I. ЛПНП — липопротеины низкой плотности. ЛПОПП липопротеины очень низкой плотности.

содержания холестерола в пище полного прекращения синтеза холестерола в организме не происходит. По-видимому, ингибируется лишь образование холестерола в печени. Опыты с перфузируемой печенью показали, что богатые холестеролом остатки хиломикронов (см. с. 264) ингибируют синтез холестерола.

Степень ингибирования биосинтеза холестерола под действием холестерола, поступающего с пищей, у людей различна. Однако, уменьшая количество холестерола в пище, можно снизить уровень холестерола в крови.

Как происходит синтез холестерина в печени?

Поскольку вещество принадлежит к классу спиртов, единственно правомочным является термин «холестерол», название же «холестерин» (буквально «твёрдая желчь» ввиду его первоначального выделения из желчных камней) закрепилось за соединением в силу традиции – впервые полученное в 1769 году французским химиком Пулетье де ля Саль, оно проявляло явные свойства жиров, к коим и было первоначально причислено.

Ввиду некоторых добросовестных заблуждений учёных, холестерин был на долгие годы объявлен для здоровья организма «врагом №1», что вызвало настоящий переворот в пищевой промышленности, фармакологии и методах лечения – одновременно с обезжиренными продуктами в мир явилась новые препараты и методики, способные существенно снизить концентрацию соединения в крови, а вместе со всем этим – и аппараты контроля за «вредителем», чтобы его можно было всегда держать в узде.

Поскольку лучшим способом проверить вредоносность того или иного фактора является метод его изъятия из обращения, это и было проделано – в итоге весь мир теперь пожинает катастрофические плоды «обезжиривающей диеты», а учёные вынуждены оправдываться и обещать всё исправить. Но сделать это можно, лишь разобравшись в происхождении и истинной роли вещества в организме.

Основные функции холестерина

Помимо того, что он является непременным компонентом (стабилизатором текучести) цитоплазматической мембраны, обеспечивая жёсткость её двойного слоя за счёт более компактного размещения фосфолипидных молекул, холестерин проявляет себя как фактор-регулятор проницаемости клеточных стенок, препятствуя гемолизу крови (воздействию гемолитических ядов на мембраны эритроцитов).

Еще он служит исходной субстанцией для производства соединений стероидной группы:

  • гормонов-кортикостероидов;
  • половых гормонов;
  • желчных кислот;
  • витаминов D-группы (эргокальциферорола и холекальциферола).

Учитывая важность для организма каждого из этой группы веществ, становится понятен вред бесхолестериновой диеты либо искусственного снижения уровня этого вещества в крови.

Ввиду нерастворимости в воде эта субстанция может быть транспортирована кровью лишь в связке с белками-транспортёрами (аполипопротеинами), при соединении с которыми образуются липопротеиновые комплексы.

По причине существования целого ряда различных аполипопротеинов (с различием молекулярной массы, степенью их тропности к холестерину, а также ввиду способности образованного комплекса к растворению в крови, и наличия обратных свойств – к выпадению холестериновых кристаллов с образованием атеросклеротической бляшки) выделяют категории липопротеинов:

  • высокой плотности (ЛПВП, или высокомолекулярные, или HDL-липопротеины);
  • низкой плотности (ЛПНП, или низкомолекулярные, или LDL-липопротеины);
  • очень низкой плотности (ЛПОНП, крайне низкомолекулярные, или VLDL- категория липопротеинов);
  • хиломикроны.

К тканям периферии холестерин поступает связанным с хиломикронами, ЛПНП либо ЛПОНП, в печень (с последующими удалением из организма) – путём транспортировки аполипопротеинами категории ЛПВП.

Особенности синтеза

Для того чтобы из холестерина образовались либо атеросклеротические бляшки (становящиеся одновременно и «заплатками» на повреждённой стенке артерии, и внутренними «распорками» в той зоне, где без них атрофия мышечного слоя должна бы привести к её окклюзии – спадению участка), либо гормоны, либо иная продукция, он в организме должен сначала синтезироваться в одном из трёх мест:

  • коже;
  • кишечнике;
  • печени.
Читайте также:  Рак груди первые признаки появляются слишком поздно

Поскольку клетки печени (их цитозоль и гладкий эндоплазматический ретикулюм) являются главными поставщиками соединения (в 50% и свыше того), следует рассмотреть синтез вещества именно с позиции совершающихся в ней реакций.

Синтез холестерина происходит в 5 этапов – с последовательным образованием:

  • мевалоната;
  • изопентенилпирофосфата;
  • сквалена;
  • ланостерина;
  • собственно холестерина.

Цепочка превращений была бы невозможной без участия ферментов, катализирующих каждую из стадий процесса.

Видео о синтезе холестерина:

Ферменты, принимающие участие в образовании вещества

На первом этапе (состоящем из трёх операций), ацетил-CoA-ацетилтрасферазой (тиолазой) первоначально инициируется создание ацетоацетил-CoA (здесь и далее CoA – коэнзим А) путём слияния 2 молекул ацетил-CoA. Далее при участии ГМГ-CoA-синтазы (гидроксиметил-глутарил-CoA-синтазы) становится возможным синтез из ацетоацетила-CoA и ещё одной молекулы ацетил-CoA ꞵ-гидрокси-ꞵ-метилглутарил-CoA.

При восстановлении ГМГ (ꞵ-гидрокси-ꞵ-метил-глутарил-CoA) путём отщепления фрагмента HS-CoA с участием НАДФ-зависимой гидроксиметил-глутарил-CoA-редуктазы (ГМГ-CoA-редуктазы) образуется первый промежуточный продукт – предшественник холестерина (мевалонат).

На этапе синтеза изопентинилпирофосфата осуществляются четыре операции. На 1 и 2 мевалонат при посредстве мевалонаткиназы (а затем фосфомевалонаткиназы) путём дважды повторяющегося фосфорилирования превращается в 5-фосфомевалонат, а далее в 5-пирофосфомевалонат, на 3 стадии (фосфорилировании по 3-му углеродному атому) становящемуся 3-фосфо-5-пирофосфомевалонатом (при участии фермента киназы).

Последняя операция – это декарбоксилирование и дефосфорилирование с образованием изопентинилпирофосфата (инициированное участием фермента пирофосфомевалонат-декарбоксилазы).

При синтезе сквалена происходит первоначальная изомеризация изопентенилпирофосфата в диметилаллилпирофосфат (под влиянием изопентилфосфатизомеразы), затем изопентенилпирофосфат конденсируется с диметилаллилпирофосфатом (образуется электронная связь между C5 первой и C5 второй субстанций) с образованием геранилпирофосфата (и отщеплением пирофосфатной молекулы).

На следующей стадии образуется связь между C5 изопентенилпирофосфата и C10 геранилпирофосфата – в результате конденсации первого со вторым происходит образование фарнезилпирофосфата и отщеплением следующей молекулы пирофосфата от C15.

Завершается данный этап конденсацией двух фарнезилпирофосфатных молекул в зоне C15— C15 (по принципу «головой-к-голове») с отщеплением сразу 2 молекул пирофосфата. Для конденсации обеих молекул используются области пирофосфатных групп, одна из которых сразу отщепляется, что приводит к возникновению прескваленпирофосфата. При восстановлении НАДФН (с отщеплением второго пирофосфата) эта промежуточная субстанция (под влиянием сквален-синтазы) обращается в скавален.

В синтезе ланостерина присутствуют 2 операции: первая завершается образованием эпоксида сквалена (под действием скваленэпоксидазы), вторая – циклизацией эпоксида сквалена в конечный продукт этапа – ланостерин. Перемещением метильной группы от C14 на C13, а от C8 на C14 ведает оксидосквален-ланостерин-циклаза.

Последний этап синтеза включает в себя последовательность из 5 операций. В результате окисления C14 -метильной группы ланостерина возникает соединение, именуемое 14-десметилланостерином. После удаления ещё двух метильных групп (на C4) вещество становится зимостеролом, а в результате перемещения двойной связи C89 в позицию C87 происходит образование δ-7,24- холестадиенола (под действием изомеразы).

После перемещения двойной связи С7=C8 в позицию С56 (с образованием десмостерола) и восстановлением двойной связи в боковой цепи образуется конечное вещество – холестерин (вернее, холестерол). «Руководит» финальной стадией синтеза холестерина фермент δ-24-редуктаза.

Что влияет на тип холестерина?

Учитывая малую растворимость низкомолекулярных липопротеидов (ЛПНП), их склонность к выпадению в осадок холестериновых кристаллов (с образованием в артериях бляшек атеросклероза, повышающих вероятность сердечных и сосудистых осложнений), липопротеиды данной категории часто называют «вредным холестерином», в то время как липопротеиды с высоким молекулярным весом (ЛПВП) с противоположными свойствами (без риска атерогенности) принято именовать холестерином «полезным».

Принимая во внимание относительность этого суждения (в организме не может быть как чего-либо безусловно полезного, так и исключительно вредного), тем не менее в настоящий момент для лиц с высокой склонностью к сосудистой патологии предлагаются меры контроля и снижения уровня ЛПНП до оптимальных показателей.

При цифре свыше 4,138 ммоль/л рекомендован подбор диеты для снижения их уровня до 3,362 (либо менее того), уровень свыше 4,914 служит показанием для назначения терапии по искусственному их снижению приёмом лекарственных препаратов.

К повышению в крови фракции «вредного холестерина» приводят факторы:

  • низкой активности тела (гиподинамии);
  • переедания (пищевой зависимости), а также его последствий – избытка массы либо ожирения;
  • несбалансированности диеты – с преобладанием трансжиров, легкоусвояемых углеводов (сладостей, сдобы) в ущерб содержанию пектиновых веществ, клетчатки, витаминов, микроэлементов, жирных кислот полиненасыщенного состава;
  • наличия привычных бытовых интоксикаций (курения, употребления спирта в виде различных напитков, злоупотребления лекарственными средствами).

Не менее мощное влияние оказывает наличие хронической соматической патологии:

  • желчнокаменной болезни;
  • эндокринных расстройств с гиперпродукцией гормонов коры надпочечников, дефицитом тиреоидных либо половых гормонов, либо сахарного диабета;
  • почечной и печёночной недостаточности с расстройствами отдельных этапов синтеза «полезных» липопротеидов, происходящего в данных органах;
  • наследственно обусловленных дислипопротеинемий.

Состояние холестеринового обмена напрямую зависит от состояния микрофлоры кишечника, способствующей (либо препятствующей) всасыванию пищевых жиров, а также участвующей в синтезе, трансформации, либо разрушении стеролов экзогенного или эндогенного происхождения.

И наоборот, к снижению показателя «вредного» холестерина приводят:

  • занятия физкультурой, играми, танцами;
  • ведение здоровой жизни без курения и алкоголя;
  • правильная пища без избытка легкоусвояемых углеводов, с малым содержанием животных жиров насыщенного состава – но с достаточным содержанием клетчатки, жирных кислот полиненасыщенного состава, липотропных факторов (лецитина, метионина, холина), микроэлементов, витаминов.
Читайте также:  Расширение лоханки почки у взрослых причины, симптомы и лечение

Видео от эксперта:

Как происходит процесс в организме?

С потребляемой пищей в организм поступают лишь около 20% холестерина – остальные 80% он вырабатывает сам, помимо печени процесс синтеза производится гладким эндоплазматическим ретикулюмом клеток:

  • кишечника;
  • надпочечных желёз;
  • почек;
  • половых желёз.

Помимо описанного выше классического механизма создания молекулы холестерола, возможно её построение и иным, не мевалонатным методом. Так, одним из вариантов является образование вещества из глюкозы (происходящее при посредстве других ферментов и при других условиях существования организма).

холестериды, всасывание холестерина

Переваривание холестеридов и всасывание холестерина. Понятие об экзогенном и эндогенном холестерине.

Холестерин в организме человека бывает 2 видов:

1) холестерин, поступающий с пищей через ЖКТ и называемый экзогенный

2) холестерин, синтезируемый из Ац – КоА — эндогенный.

С пищей ежедневно поступает ≈ 0,2 – 0,5 г, синтезируется ≈ 1 г (почти все клетки за исключением эритроцитов синтезируют холестерин, 80% холестерина синтезируется в печени.)

Взаимоотношения экзо и эндогенного холестерина в определенной степени конкурентные – холестерин пищи ингибирует его синтез в печени.

В составе пищи холестерин находится в основном в виде эфиров. Гидролиз эфиров холестерола происходит под действием холестеролэстеразы. Продукты гидролиза всасываются в составе смешанных мицелл.

Всасывание холестерина происходит в основном в тощей кишке (пищевой холестерин всасывается почти полностью – если в пище его не очень много)

Всасывание холестерина осуществляется только после эмульгирования эфиров холестерина. Эмульгаторами являются желчные кислоты, моно- и диглицериды и лизолецитины. Холестериды гидролизуются холестеринэстеразой поджелудочной железы.

Пищевой и эндогенный холестерин находится в просвете кишечника в неэстерифицированной форме в составе сложных мицелл (желчные, жирные кислоты, лизолецитин), причем поступают в состав слизистой кишечника не вся мицелла целиком, а ее отдельные фракции.

Поглощение холестерина из мицелл – пассивный процесс, идущий по градиенту концентрации. Поступивший в клетки слизистой холестерин этерифицируется холестеринэстеразой или АХАТ (у человека это в основном олеиновая кислота). Из клеток слизистой кишечника холестерин поступает в лимфу в составе ХМ, из них он переходит в ЛНП и ЛВП. В лимфе и крови 60-80% всего холестерина находится в этерифицированном виде.

Процесс всасывания холестерина из кишечника зависит от состава пищи: жиры и углеводы способствуют его всасыванию, растительные стероиды (структурные аналоги) блокируют этот процесс. Большое значение принадлежит желчным кислотам (все функции активируют – улучшают эмульгирование, всасывание). Отсюда значение лекарственных веществ, блокирующих всасывание желчных кислот.

Основные этапы синтеза холестерина. Химизм реакции образования мевалоновой кислоты. Ключевой фермент синтеза холестерина. Представьте схематически скваленовый путь синтеза холестерина

Ключевой фермент биосинтеза холестерина — ГМГ-редуктаза

Реакции синтеза холестерола происходят в цитозоле клеток. Это один из самых длинных метаболических путей в организме человека.

1 этап-Образование мевалоната

Две молекулы ацетил-КоА конденсируются ферментом тиолазой с образованием ацетоацетил-КоА.

Фермент гидроксиметилглутарил-КоА-синтаза присоединяет третий ацетильный остаток с образованием ГМГ-КоА (3-гидрокси-3-метилглутарил-КоА).

Следующая реакция, катализируемая ГМГ-КоА-редуктазой, является регуляторной в метаболическом пути синтеза холестерола. В этой реакции происходит восстановление ГМГ-КоА до мевалоната с использованием 2 молекул NADPH. Фермент ГМГ-КоА-редуктаза — гликопротеин, пронизывающий мембрану ЭР, активный центр которого выступает в цитозоль.

2 этап — Образование сквалена

На втором этапе синтеза мевалонат превращается в пятиуглеродную изопреноидную структуру, содержащую пирофосфат — изопентенилпирофосфат. Продукт конденсации 2 изопреновых единиц — геранилпирофосфат. Присоединение ещё 1 изопреновой единицы приводит к образованию фарнезилпирофосфата — соединения, состоящего из 15 углеродных атомов. Две молекулы фарнезилпирофосфата конденсируются с образованием сквалена — углеводорода линейной структуры, состоящего из 30 углеродных атомов.

3 этап — Образование холестерола

На третьем этапе синтеза холестерола сквален через стадию образования эпоксида ферментом циклазой превращается в молекулу ланостерола, содержащую 4 конденсированных цикла и 30 атомов углерода. Далее происходит 20 последовательных реакций, превращающих ланостерол в холестерол. На последних этапах синтеза от ланостерола отделяется 3 атома углерода, поэтому холестерол содержит 27 углеродных атомов.

Биологическая роль холестерина. Пути использования холестерина в различных тканях. Биосинтез желчных кислот.

Часть холестеринового фонда в организме постоянно окисляется, преобразуясь в различного рода стероидные соединения. Основной путь окисления холестерина — образование желчных кислот. На эти цели уходит от 60 до 80% ежедневно образующегося в организме холестерина. Второй путь — образование стероидных гормонов (половые гормоны, гормоны коры надпочечников и др.). На эти цели уходит всего 2-4% холестерина, образующегося в организме. Третий путь — образование в коже витамина ДЗ под действием ультрафиолетовых лучей.

Еще одним производным холестерина является холестанол. Его роль в организме пока еще не выяснена. Известно лишь, что он активно накапливается в надпочечниках и составляет 16% от всех находящихся там стероидов. С мочой у человека выделяется около 1 мг холестерина в сутки, а со слущивающимся эпителием кожи теряется до 100 мг/сут.

Желчные кислоты являются основным компонентом билиарной секреции, они образуются только в печени. Синтезируются в печени из холестерина.

В организме синтезируется за сутки 200-600 мг желчных кислот. Первая реакция синтеза-образование 7-альфа-гидроксихолестерола-является регуляторной.Фермент-7-альфа-гидроксилаза,ингибируется конечным продуктом-желчными кислотами.7-альфа-гидроксилаза представляет собой одну из форм цитохрома п450 и использует атом кислорода как один из субстратов. Один атом кислорода из О2 включается в гидроксильную группу в 7 положении, а другой восстанавливается до воды. Последующие реакции синтеза приводят к формированию 2 видов желчных кислот:холевой и хондезоксихолевой(первичные желчные кислоты)

Читайте также:  Сколько можно пить во время беременности Нормы потребления воды

Особенности обмена холестерина в организме человека. Роль липопротеинлипазы, печеночной липазы, липопротеинов, ЛХАТ, апопротеинов в транспорте холестерина в крови: альфа- и бета-холестерин, коэффициент атерогенности, АХАТ, накопление холестерина в тканях. Пути распада и выведения холестерина

В организме человека содержится 140-190 г холестерина и около 2 г образуется ежедневно из жиров,углеводов, белков. Чрезмерное поступление холестерина с пищей приводит к отложению его в сосудах и может способствовать развитию атеросклероза, а также нарушению функции печени и развитию желчно-каменной болезни. Ненасыщенные жирные кислоты ( линолевая, линоленовая) затрудняют всасывание холестерина в кишечнике, тем самым способствуя уменьшению его содержания в организме. Насыщенные жирные кислоты (пальмитиновая, стеариновая) являются источником образования холестерина.

Липопротеинлипаза (ЛПЛ) — фермент, относящийся к классу липаз. ЛПЛ расщепляет триглицериды самых крупных по размеру и богатых липидами липопротеинов плазмы крови — хиломикронов и липопротеинов очень низкой плотности (ЛПОНП или ЛОНП)). ЛПЛ регулирует уровень липидов в крови, что определяет её важное значение в атеросклерозе.

Печёночная липаза — один из ферментов липидного метаболизма. Эта липаза по ферментативному действию похожа на панкреатическую липазу. Однако в отличие от панкреатической липазы ПЛ синтезируется в печени и секретируется в кровь. Печёночная липаза после секреции связывается со стенкой сосуда (почти исключительно в печени) и расщепляет липиды липопротеинов.

Печёночная липаза работает в кровотоке в тандеме с липопротеинлипазой. Липопротеинлипаза расщепляет липопротеины, богатые триглицеридами (липопротеины очень низкой плотности и хиломикроны), до их остатков. Остатки липопротеинов являются в свою очередь субстратом для печёночной липазы. Таким образом, в результате действия печёночной липазы образуются атерогенные липопротеины низкой плотности, которые поглощаются печенью.

(ЛВП) — Транспорт холестерина от периферийных тканей к печени

(ЛНП) — Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

ЛПП (ЛСП) — Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

(ЛОНП)-Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

Хиломикроны -Транспорт холестерина и жирных кислот, поступающих с пищей, из кишечника в периферические ткани и печень

Лецитинхолестеринацилтрансфераза (ЛХАТ)- является ферментом метаболизма липопротеинов. ЛХАТ связан с поверхностью липопротеинов высокой плотности, которые содержат аполипопротеин A1 — активатор этого фермента. Холестерин, превращённый в эфиры холестерина, благодаря высокой гидрофобности перемещается с поверхности липопротеина в ядро, освобождая место на поверхности частицы для захвата нового свободного холестерина. Таким образом, эта реакция является исключительно важной для процесса очищения периферических тканей от холестерина (обратный транспорт холестерина). Частица ЛПВП в результате увеличивается в диаметре или в случае насцентных ЛПВП превращается из дисковидной в сферическую.

Апопротеины формируют структуру липоппротеинов,взаимодействуют с рецепторами на поверхности клеток и таким образом определяют какими тканями будет захватываться данный тип липопротеидов, служат ферментами или активаторами ферментов, действующих на липопротеины.

АХАТ катализирует эстерификацию холестерола . Свободный холестерол выходит в цитоплазму , где ингибирует ГМГ-CoA-редуктазу и de novo синтез холестерола и активирует АХАТ . У человека, однако, из-за низкой активности АХАТ в печени холестерол поступает в плазму в составе ЛПОНП преимущественно в свободном виде.

Нарушение обмена холестерола и холестеридов проявляется прежде всего накоплением их в тканях (кумулятивные холестерозы), особенно в стенке артерий и в коже. Основной причиной накопления холестерола в тканях является недостаточность механизма его обратного транспорта. Ключевым фактором системы обратного транспорта холестерола (с периферии в печень, откуда его излишки удаляются из организма с желчью) являются липопротеины высокой плотности, точнее входящий в их состав белок апопротеин А. Частицы липопротеинов высокой плотности собирают холестерол не только в интерстициальном секторе, но и внутри клеток. У человека (а также высших обезьян и свиней) существует видовая (характерная для всех представителей вида) недостаточность апопротеина А и, соответственно, липопротеинов высокой плотности. Животные с высоким содержанием этих липопротеинов не страдают холестериновым диатезом, даже при постоянном употреблении богатой холестеролом пищи. Некоторые люди также отличаются довольно высокой концентрацией апопротеина А («синдром долголетия»).

Из организма человека ежедневно выводится около 1 г холестерола. Приблизительно половина этого количества экскретируется с фекалиями после превращения в желчные кислоты . Оставшаяся часть выводится в виде нейтральных стероидов. Большая часть холестерола, поступившего в желчь, реабсорбируется; считается, что по крайней мере часть холестерола, являющегося предшественником фекальных стеролов , поступает из слизистой оболочки кишечника . Основным фекальным стеролом является копростанол , который образуется из холестерола в нижнем отделе кишечник а под действием присутствующей в нем микрофлоры . Значительная доля солей желчных кислот , поступающих с желчью, всасывается в кишечнике и через воротную вену возвращается в печень , где снова поступает в желчь. Этот путь транспорта солей желчных кислот получил название кишечно-печеночной циркуляции . Оставшаяся часть солей желчных кислот, а также их производные выводятся с фекалиями. Под действием кишечных бактерий первичные желчные кислоты превращаются во вторичные.

Ссылка на основную публикацию
Ревматическая эритема Лендорфа-Лейнера
Эритема кольцевидная центробежная Дарье Женщину 53 лет беспокоят высыпания, сопровождающиеся умеренным зудом, периодически беспричинно возникающие на конечностях и туловище. Дебют...
Ребенка укусил боррелиозный клещ что делать, какие симптомы болезни Лайма у детей, как лечить
Ребенка укусил зараженный боррелиозом клещ: что делать после укуса, какие симптомы болезни Лайма у детей, как лечить? В педиатрии боррелиоз...
Ребенок во сне дергает руками и ногами — это норма или патология
Из-за чего ребенок дергает ножками и ручками Здравствуйте, дорогие друзья! Сегодня у нас с вами на очереди статья, посвященная здоровью...
Ревматологи в Краснодаре — отзывы, рейтинг, найти хорошего ревматолога
Ревматология боли, припухлость, покраснение, скованность суставов, боли в нижней трети спины, боли в суставах стартового характера, хруст в них? слабость,...
Adblock detector